ArticleOriginal scientific text

Title

Power moments of the error term in the approximate functional equation for ζ²(s)

Authors 1

Affiliations

  1. Katedra Matematike RGF-A, Universiteta u Beogradu, Djušina 7, 11000 Beograd, Serbia (Yugoslavia)

Keywords

Riemann zeta-function, approximate functional equation, Voronoï formula for the divisor problem, d(n) the number of divisors of n

Bibliography

  1. D. R. Heath-Brown, The distribution and moments of the error term in the Dirichlet divisor problem, Acta Arith. 60 (1992), 389-415.
  2. A. Ivić, Large values of the error term in the divisor problem, Invent. Math. 71 (1983), 513-520.
  3. A. Ivić, The Riemann Zeta-function, Wiley, New York, 1985.
  4. A. Ivić, Large values of certain number-theoretic error terms, Acta Arith. 56 (1990), 135-159.
  5. H. Iwaniec and C. J. Mozzochi, On the divisor and circle problems, J. Number Theory 29 (1988), 60-93.
  6. I. Kiuchi, An improvement on the mean value formula for the approximate functional equation of the square of the Riemann zeta-function, J. Number Theory, to appear.
  7. I. Kiuchi, Power moments of the error term for the approximate functional equation of the Riemann zeta-function, Publ. Inst. Math. (Beograd) 52 (66) (1992), in print.
  8. I. Kiuchi and K. Matsumoto, Mean value results for the approximate functional equation of the square of the Riemann zeta-function, Acta Arith. 61 (1992), 337-345.
  9. T. Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math. Oxford Ser. (2) 38 (1987), 337-343.
  10. Y. Motohashi, A note on the approximate functional equation for ζ²(s), Proc. Japan Acad. Ser. A 59 (1983), 393-396 and II, Quart. J. Math. Oxford Ser. 469-472.
  11. Y. Motohashi, Lectures on the Riemann-Siegel Formula, Ulam Seminar, Dept. Math., Colorado University, Boulder, 1987.
  12. E. Preissmann, Sur la moyenne quadratique du terme de reste du problème du cercle, C. R. Acad. Sci. Paris 306 (1988), 151-154.
  13. K.-C. Tong, On divisor problem III, Acta Math. Sinica 6 (1956), 515-541 (in Chinese).
  14. K.-M. Tsang, Higher power moments of Δ(x), E(t) and P(x), Proc. London Math. Soc. (3) 65 (1992), 65-84.
Pages:
137-145
Main language of publication
English
Received
1992-12-02
Published
1993
Exact and natural sciences