ArticleOriginal scientific text

Title

Generalization of a problem of Diophantus

Authors 1

Affiliations

  1. Department of Mathematics, University of Zagreb, Bijenička Cesta 30, 41000 Zagreb, Croatia

Bibliography

  1. J. Arkin and G. E. Bergum, More on the problem of Diophantus, in: Applications of Fibonacci Numbers, A. N. Philippou, A. F. Horadam and G. E. Bergum (eds.), Kluwer, Dordrecht, 1988, 177-181.
  2. A. H. Beiler, Recreations in the Theory of Numbers, Dover, New York, 1966.
  3. H. Davenport and A. Baker, The equations 3x² - 2 = y² and8x² - 7 = z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
  4. A. Dujella, One Diofant's problem and Fibonacci's numbers, Matematika 19 (3) (1990), 45-52 (in Croatian).
  5. A. Dujella, Generalization of a Diophantine problem, Matematika 20 (1) (1991), 22-29 (in Croatian).
  6. B. W. Jones, A variation on a problem of Davenport and Diophantus, Quart. J. Math. Oxford Ser. (2) 27 (1976), 349-353.
  7. C. Long and G. E. Bergum, On a problem of Diophantus, in: Applications of Fibonacci Numbers, A. N. Philippou, A. F. Horadam and G. E. Bergum (eds.), Kluwer, Dordrecht, 1988, 183-191.
  8. S. Vajda, Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications, Horwood, Chichester, 1989.
  9. I. M. Vinogradov, Elements of Number Theory, Dover, New York, 1954
Pages:
15-27
Main language of publication
English
Received
1991-12-18
Accepted
1993-03-10
Published
1993
Exact and natural sciences