ArticleOriginal scientific text
Title
Explicit solution of a class of quartic Thue equations
Authors 1
Affiliations
- Department of Mathematics, University of Crete, Iraklion, Greece
Bibliography
- [BD] A. Baker and H. Davenport, The equations 3x²-2=y² and 8x²-7=z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
- [C1] J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153-166.
- [C2] J. H. E. Cohn, The Diophantine equation y²=Dx⁴+1, J. London Math. Soc. 42 (1967), 475-476.
- [C3] J. H. E. Cohn, Some quartic Diophantine equations, Pacific J. Math. 26 (1968), 233-243.
- [C4] J. H. E. Cohn, The Diophantine equation y²=Dx⁴+1, II, Acta Arith. 28 (1975), 273-275.
- [C5] J. H. E. Cohn, The Diophantine equation y²=Dx⁴+1, III, Math. Scand. 42 (1978), 180-188.
- [M*] L. J. Mordell, Diophantine Equations, Pure Appl. Math. 30, Academic Press, London 1969.
- [MR] S. P. Mohanty and A. M. S. Ramasamy, The characteristic number of two simultaneous Pell's equations and its applications, Simon Stevin 59 (1985), 203-214.
- [N] T. Nagell, Sur quelques questions dans la théorie des corps biquadratiques, Ark. Mat. 4 (1961), 347-376.
- [N*] T. Nagell, Introduction to Number Theory, Chelsea, New York 1964.
- [PS] A. Pethő and R. Schulenberg, Effektives Lösen von Thue Gleichungen, Publ. Math. Debrecen 34 (1987), 189-196.
- [P] R. G. E. Pinch, Simultaneous Pellian equations, Math. Proc. Cambridge Philos. Soc. 103 (1988), 35-46.
- [TW] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132.
- [Z] D. Zagier, Large integral points on elliptic curves, Math. Comp. 48 (1987), 425-436