ArticleOriginal scientific text

Title

The number of squarefull numbers in an interval

Authors 1

Affiliations

  1. 206-10, Bao Guo Street, Harbin, 150066 P. R. China

Bibliography

  1. E. Bombieri and H. Iwaniec, On the order of ζ(1/2+it), Ann. Scuola Norm. Sup. Pisa (4) 13 (1986), 449-472.
  2. M. N. Huxley and N. Watt, Exponential sums and the Riemann zeta function, Proc. London Math. Soc. (3) 57 (1988), 1-24.
  3. H. Iwaniec and C. J. Mozzochi, On the divisor and circle problems, J. Number Theory 29 (1988), 60-93.
  4. G. Kolesnik, On the number of Abelian groups of a given order, J. Reine Angew. Math. 329 (1981), 164-175.
  5. H. Liu, On square-full numbers in short intervals, Acta Math. Sinica (N.S.) (2) 6 (1990), 148-164.
  6. E. Phillips, The zeta-function of Riemann, further developments of van der Corput's method, Quart. J. Math. Oxford 4 (1933), 209-225.
  7. H. E. Richert, On the difference between consecutive squarefree numbers, J. London Math. Soc. 28 (1953), 16-20.
  8. P. G. Schmidt, Zur Anzahl quadratvoller Zahlen in kurzen Intervallen, Acta Arith. 46 (1986), 159-164.
  9. P. G. Schmidt, Über die Anzahl quadratvoller Zahlen in kurzen Intervallen und ein verwandtes Gitterpunkproblem. Corrigendum zu Acta Arithmetica L (1988), 195-201, Acta Arith. 54 (1990), 251-254.
  10. P. Shiu, On square-full integers in a short interval, Glasgow Math. J. 25 (1984), 127-134.
  11. I. M. Vinogradov, A new estimate for ζ(1+it), Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 161-164
Pages:
129-149
Main language of publication
English
Received
1992-01-07
Accepted
1992-06-17
Published
1993
Exact and natural sciences