ArticleOriginal scientific text

Title

A simple characterization of principal ideal domains

Authors 1

Affiliations

  1. Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania. 18015, U.S.A.

Abstract

1. Introduction. In this note we give necessary and sufficient conditions for an integral domain to be a principal ideal domain. Curiously, these conditions are similar to those that characterize Euclidean domains. In Section 2 we establish notation, discuss related results and prove our theorem. Finally, in Section 3 we give two nontrivial applications to real quadratic number fields.

Bibliography

  1. H. Cohn, Advanced Number Theory, Dover, 1980.
  2. N. Jacobson, Basic Algebra I, 2nd ed., Freeman, 1985.
  3. M. Kutsuna, On a criterion for the class number of a real quadratic field to be one, Nagoya Math. J. 79 (1980), 123-129.
  4. T. Motzkin, The Euclidean algorithm, Bull. Amer. Math. Soc. 55 (1949), 1142-1146.
  5. C. Queen, Arithmetic euclidean rings, Acta Arith. 26 (1974), 105-113.
  6. G. Rabinowitsch, Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern, J. Reine Angew. Math. 142 (1913), 153-164.
  7. P. Samuel, About Euclidean rings, J. Algebra 19 (1971), 282-301.
Pages:
125-128
Main language of publication
English
Received
1991-12-18
Accepted
1992-11-20
Published
1993
Exact and natural sciences