ArticleOriginal scientific text
Title
A simple characterization of principal ideal domains
Authors 1
Affiliations
- Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania. 18015, U.S.A.
Abstract
1. Introduction. In this note we give necessary and sufficient conditions for an integral domain to be a principal ideal domain. Curiously, these conditions are similar to those that characterize Euclidean domains. In Section 2 we establish notation, discuss related results and prove our theorem. Finally, in Section 3 we give two nontrivial applications to real quadratic number fields.
Bibliography
- H. Cohn, Advanced Number Theory, Dover, 1980.
- N. Jacobson, Basic Algebra I, 2nd ed., Freeman, 1985.
- M. Kutsuna, On a criterion for the class number of a real quadratic field to be one, Nagoya Math. J. 79 (1980), 123-129.
- T. Motzkin, The Euclidean algorithm, Bull. Amer. Math. Soc. 55 (1949), 1142-1146.
- C. Queen, Arithmetic euclidean rings, Acta Arith. 26 (1974), 105-113.
- G. Rabinowitsch, Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern, J. Reine Angew. Math. 142 (1913), 153-164.
- P. Samuel, About Euclidean rings, J. Algebra 19 (1971), 282-301.