ArticleOriginal scientific text

Title

Some remarks on the S-unit equation in function fields

Authors 1

Affiliations

  1. Ist. Univ. Arch. D.S.T.R., S. Croce, 191, 30135 Venezia, Italy

Bibliography

  1. F. Baldassarri and B. Dwork, On second order linear differential equations with algebraic solutions, Amer. J. Math. 101 (1979), 42-76.
  2. J. Browkin and J. Brzeziński, Some remarks on the abc-conjecture, Math. Comp., to appear.
  3. W. D. Brownawell and D. Masser, Vanishing sums in function fields, Math. Proc. Cambridge Philos. Soc. 100 (1986), 427-434.
  4. B. Chiarellotto, On Lamé operator with finite monodromy group, Trans. Amer. Math. Soc., to appear.
  5. M. Fried, On a conjecture of Schur, Michigan Math. J. 17 (1970), 41-55.
  6. M. Fried, On a theorem of Ritt and related diophantine problems, J. Reine Angew. Math. 264 (1973), 40-55.
  7. W. Fulton, Fundamental Group of a Curve, Archives of the Princeton University Mathematics Library, 1966.
  8. R. C. Mason, Equations over function fields, in: Number Theory, Noordwijkerhout 1983, Lecture Notes in Math. 1068, Springer, 1984, 149-157.
  9. R. C. Mason, Diophantine Equations over Function Fields, London Math. Soc. Lecture Note Ser. 96, Cambridge Univ. Press, 1984.
  10. R. C. Mason, Norm form equations I, J. Number Theory 22 (1986), 190-207.
  11. A. Schinzel, Selected Topics on Polynomials, Univ. of Michigan Press, 1982.
  12. H. Seifert and W. Threlfall, Lehrbuch der Topologie, Teubner, Leipzig 1932.
  13. C. L. Siegel, Topics in Complex Function Theory, Vol. I, Interscience Publ., New York 1969.
  14. J. H. Silverman, The S-unit equation over function fields, Math. Proc. Cambridge Philos. Soc. 95 (1984), 3-4.
  15. M. Tretkoff, Algebraic extensions of the field of rational functions, Comm. Pure Appl. Math. 24 (1971), 491-497.
  16. J. F. Voloch, Diagonal equations over function fields, Bol. Soc. Brasil. Mat. 16 (1985), 29-39.
Pages:
87-98
Main language of publication
English
Received
1992-07-13
Accepted
1992-10-16
Published
1993
Exact and natural sciences