Institut für Informationsverarbeitung, Österr. Akademie der Wissenschaften, Sonnenfelsgasse 19, A-1010 Wien, Österreich
Bibliografia
[1] J. V. Armitage, An analogue of a problem of Littlewood, Mathematika 16 (1969), 101-105.
[2] J. V. Armitage, Corrigendum and addendum: An analogue of a problem of Littlewood, Mathematika 17 (1970), 173-178.
[3] L. E. Baum and M. M. Sweet, Badly approximable power series in characteristic 2, Ann. of Math. 105 (1977), 573-580.
[4] H. Faure, Discrépance de suites associées à un système de numération (en dimension s), Acta Arith. 41 (1982), 337-351.
[5] T. Hansen, G. L. Mullen and H. Niederreiter, Good parameters for a class of node sets in quasi-Monte Carlo integration, Math. Comp., to appear.
[6] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York 1974.
[7] G. Larcher, Über die isotrope Diskrepanz von Folgen, Arch. Math. (Basel) 46 (1986), 240-249.
[8] G. Larcher, On the distribution of s-dimensional Kronecker-sequences, Acta Arith. 51 (1988), 335-347.
[9] G. Larcher, On the distribution of the multiples of an s-tupel of real numbers, J. Number Theory 31 (1989), 367-372.
[10] G. Larcher, Nets obtained from rational functions over finite fields, this volume, 1-13.
[11] H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), 957-1041.
[12] H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273-337.
[13] H. Niederreiter, Quasi-Monte Carlo methods for multidimensional numerical integration, in: Numerical Integration III, H. Braß and G. Hämmerlin (eds.), Internat. Ser. Numer. Math. 85, Birkhäuser, Basel 1988, 157-171.
[14] H. Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory 30 (1988), 51-70.
[15] H. Niederreiter, The probabilistic theory of linear complexity, in: Advances in Cryptology - EUROCRYPT'88, C. G. Günther (ed.), Lecture Notes in Comput. Sci. 330, Sprin- ger, Berlin 1988, 191-209.
[16] H. Niederreiter, Low-discrepancy point sets obtained by digital constructions over finite fields, Czechoslovak Math. J. 42 (1992), 143-166.
[17] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia 1992.
[18] H. Niederreiter, Finite fields, pseudorandom numbers, and quasirandom points, in: Proc. Internat. Conf. on Finite Fields (Las Vegas 1991), Dekker, New York 1992, 375-394.
[19] W. M. Schmidt, Irregularities of distribution, VII, Acta Arith. 21 (1972), 45-50.
[20] J. Schoißengeier, On the discrepancy of (nα), Acta Arith. 44 (1984), 241-279.
[21] I. M. Sobol', The distribution of points in a cube and the approximate evaluation of integrals, Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967), 784-802 (in Russian).
[22] Y. Taussat, Approximation diophantienne dans un corps de séries formelles, Thèse, Université de Bordeaux, 1986.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav63i4p379bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.