ArticleOriginal scientific text
Title
Kronecker-type sequences and nonarchimedean diophantine approximations
Authors 1, 2
Affiliations
- Institut für Mathematik, Universität Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Österreich
- Institut für Informationsverarbeitung, Österr. Akademie der Wissenschaften, Sonnenfelsgasse 19, A-1010 Wien, Österreich
Bibliography
- J. V. Armitage, An analogue of a problem of Littlewood, Mathematika 16 (1969), 101-105.
- J. V. Armitage, Corrigendum and addendum: An analogue of a problem of Littlewood, Mathematika 17 (1970), 173-178.
- L. E. Baum and M. M. Sweet, Badly approximable power series in characteristic 2, Ann. of Math. 105 (1977), 573-580.
- H. Faure, Discrépance de suites associées à un système de numération (en dimension s), Acta Arith. 41 (1982), 337-351.
- T. Hansen, G. L. Mullen and H. Niederreiter, Good parameters for a class of node sets in quasi-Monte Carlo integration, Math. Comp., to appear.
- L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York 1974.
- G. Larcher, Über die isotrope Diskrepanz von Folgen, Arch. Math. (Basel) 46 (1986), 240-249.
- G. Larcher, On the distribution of s-dimensional Kronecker-sequences, Acta Arith. 51 (1988), 335-347.
- G. Larcher, On the distribution of the multiples of an s-tupel of real numbers, J. Number Theory 31 (1989), 367-372.
- G. Larcher, Nets obtained from rational functions over finite fields, this volume, 1-13.
- H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), 957-1041.
- H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273-337.
- H. Niederreiter, Quasi-Monte Carlo methods for multidimensional numerical integration, in: Numerical Integration III, H. Braß and G. Hämmerlin (eds.), Internat. Ser. Numer. Math. 85, Birkhäuser, Basel 1988, 157-171.
- H. Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory 30 (1988), 51-70.
- H. Niederreiter, The probabilistic theory of linear complexity, in: Advances in Cryptology - EUROCRYPT'88, C. G. Günther (ed.), Lecture Notes in Comput. Sci. 330, Sprin- ger, Berlin 1988, 191-209.
- H. Niederreiter, Low-discrepancy point sets obtained by digital constructions over finite fields, Czechoslovak Math. J. 42 (1992), 143-166.
- H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia 1992.
- H. Niederreiter, Finite fields, pseudorandom numbers, and quasirandom points, in: Proc. Internat. Conf. on Finite Fields (Las Vegas 1991), Dekker, New York 1992, 375-394.
- W. M. Schmidt, Irregularities of distribution, VII, Acta Arith. 21 (1972), 45-50.
- J. Schoißengeier, On the discrepancy of (nα), Acta Arith. 44 (1984), 241-279.
- I. M. Sobol', The distribution of points in a cube and the approximate evaluation of integrals, Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967), 784-802 (in Russian).
- Y. Taussat, Approximation diophantienne dans un corps de séries formelles, Thèse, Université de Bordeaux, 1986.