ArticleOriginal scientific text

Title

Kronecker-type sequences and nonarchimedean diophantine approximations

Authors 1, 2

Affiliations

  1. Institut für Mathematik, Universität Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Österreich
  2. Institut für Informationsverarbeitung, Österr. Akademie der Wissenschaften, Sonnenfelsgasse 19, A-1010 Wien, Österreich

Bibliography

  1. J. V. Armitage, An analogue of a problem of Littlewood, Mathematika 16 (1969), 101-105.
  2. J. V. Armitage, Corrigendum and addendum: An analogue of a problem of Littlewood, Mathematika 17 (1970), 173-178.
  3. L. E. Baum and M. M. Sweet, Badly approximable power series in characteristic 2, Ann. of Math. 105 (1977), 573-580.
  4. H. Faure, Discrépance de suites associées à un système de numération (en dimension s), Acta Arith. 41 (1982), 337-351.
  5. T. Hansen, G. L. Mullen and H. Niederreiter, Good parameters for a class of node sets in quasi-Monte Carlo integration, Math. Comp., to appear.
  6. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York 1974.
  7. G. Larcher, Über die isotrope Diskrepanz von Folgen, Arch. Math. (Basel) 46 (1986), 240-249.
  8. G. Larcher, On the distribution of s-dimensional Kronecker-sequences, Acta Arith. 51 (1988), 335-347.
  9. G. Larcher, On the distribution of the multiples of an s-tupel of real numbers, J. Number Theory 31 (1989), 367-372.
  10. G. Larcher, Nets obtained from rational functions over finite fields, this volume, 1-13.
  11. H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), 957-1041.
  12. H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273-337.
  13. H. Niederreiter, Quasi-Monte Carlo methods for multidimensional numerical integration, in: Numerical Integration III, H. Braß and G. Hämmerlin (eds.), Internat. Ser. Numer. Math. 85, Birkhäuser, Basel 1988, 157-171.
  14. H. Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory 30 (1988), 51-70.
  15. H. Niederreiter, The probabilistic theory of linear complexity, in: Advances in Cryptology - EUROCRYPT'88, C. G. Günther (ed.), Lecture Notes in Comput. Sci. 330, Sprin- ger, Berlin 1988, 191-209.
  16. H. Niederreiter, Low-discrepancy point sets obtained by digital constructions over finite fields, Czechoslovak Math. J. 42 (1992), 143-166.
  17. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia 1992.
  18. H. Niederreiter, Finite fields, pseudorandom numbers, and quasirandom points, in: Proc. Internat. Conf. on Finite Fields (Las Vegas 1991), Dekker, New York 1992, 375-394.
  19. W. M. Schmidt, Irregularities of distribution, VII, Acta Arith. 21 (1972), 45-50.
  20. J. Schoißengeier, On the discrepancy of (nα), Acta Arith. 44 (1984), 241-279.
  21. I. M. Sobol', The distribution of points in a cube and the approximate evaluation of integrals, Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967), 784-802 (in Russian).
  22. Y. Taussat, Approximation diophantienne dans un corps de séries formelles, Thèse, Université de Bordeaux, 1986.
Pages:
379-396
Main language of publication
English
Received
1992-11-09
Published
1993
Exact and natural sciences