ArticleOriginal scientific text

Title

The √p Riemann surface

Authors 1

Affiliations

  1. Department of Mathematics, Cuny, Baruch College, New York, New York 10010, U.S.A.

Bibliography

  1. M. Akbas and D. Singerman, Symmetries of modular surfaces, preprint.
  2. N. C. Ankeny, E. Artin and S. Chowla, The class number of real quadratic fields, Ann. of Math. (2) 56 (1952), 479-493.
  3. L. K. Hua, Introduction to Number Theory, Springer, New York 1981.
  4. R. Moeckel, Geodesics on modular surfaces and continued fractions, Ergodic Theory Dynamical Systems 2 (1982), 69-83.
  5. R. Mollin and H. C. Williams, Class number one for real quadratic fields, continued fractions, and reduced ideals, in: Canadian Number Theory Association Conference Proceedings (Banff, 1988), R. Mollin (ed.), W. de Gruyter, Berlin 1990, 417-425.
  6. R. Ruedy, Symmetric embeddings of Riemann surfaces, in: Discontinuous Groups and Riemann Surfaces, Proc. Conf. (Univ. Maryland, College Park, Md., 1973), Ann. of Math. Stud. 79, Princeton Univ. Press, Princeton, N.J., 1974, 409-418.
  7. M. Sheingorn, Hyperbolic reflections on Pell's equation, J. Number Theory 33 (1989), 267-285.
Pages:
255-266
Main language of publication
English
Received
1991-10-17
Published
1993
Exact and natural sciences