ArticleOriginal scientific text

Title

On the trace of the ring of integers of an abelian number field

Authors 1

Affiliations

  1. Institut für Mathematik, Universität Innsbruck, Technikerstr. 25/7, A-6020 Innsbruck, Österreich

Abstract

Let K, L be algebraic number fields with K ⊆ L, and OK, OL their respective rings of integers. We consider the trace map T=TLK:LK and the OK-ideal T(OL)OK. By I(L/K) we denote the group index} of T(OL) in OK (i.e., the norm of T(OL) over ℚ). It seems to be difficult to determine I(L/K) in the general case. If K and L are absolutely abelian number fields, however, we obtain a fairly explicit description of the number I(L/K). This is a consequence of our description of the Galois module structure of T(OL) (Theorem 1). The case of equal conductors fK=fL of the fields K, L is of particular interest. Here we show that I(L/K) is a certain power of 2 (Theorems 2, 3, 4).

Bibliography

  1. K. Girstmair, Dirichlet convolution of cotangent numbers and relative class number formulas, Monatsh. Math. 110 (1990), 231-256.
  2. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, New York 1982.
  3. H. W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math. 201 (1959), 119-149.
  4. G. Lettl, The ring of integers of an abelian number field, J. Reine Angew. Math. 404 (1990), 162-170.
Pages:
383-389
Main language of publication
English
Received
1992-02-10
Accepted
1992-03-25
Published
1992
Exact and natural sciences