ArticleOriginal scientific text
Title
On the trace of the ring of integers of an abelian number field
Authors 1
Affiliations
- Institut für Mathematik, Universität Innsbruck, Technikerstr. 25/7, A-6020 Innsbruck, Österreich
Abstract
Let K, L be algebraic number fields with K ⊆ L, and , their respective rings of integers. We consider the trace map
and the -ideal . By I(L/K) we denote the group index} of in (i.e., the norm of over ℚ). It seems to be difficult to determine I(L/K) in the general case. If K and L are absolutely abelian number fields, however, we obtain a fairly explicit description of the number I(L/K). This is a consequence of our description of the Galois module structure of (Theorem 1). The case of equal conductors of the fields K, L is of particular interest. Here we show that I(L/K) is a certain power of 2 (Theorems 2, 3, 4).
Bibliography
- K. Girstmair, Dirichlet convolution of cotangent numbers and relative class number formulas, Monatsh. Math. 110 (1990), 231-256.
- K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, New York 1982.
- H. W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math. 201 (1959), 119-149.
- G. Lettl, The ring of integers of an abelian number field, J. Reine Angew. Math. 404 (1990), 162-170.