ArticleOriginal scientific text

Title

On the degrees of irreducible factors of higher order Bernoulli polynomials

Authors 1

Affiliations

  1. Department of Mathematics and Computer Science, Grinnell College, Grinnell, Iowa 50112, U.S.A.

Bibliography

  1. A. Adelberg, A finite difference approach to degenerate Bernoulli and Stirling polynomials, Discrete Math., submitted.
  2. A. Adelberg, Irreducible factors and p-adic poles of higher order Bernoulli polynomials, C. R. Math. Rep. Acad. Sci. Canada 14 (1992), 173-178.
  3. J. Brillhart, On the Euler and Bernoulli polynomials, J. Reine Angew. Math. 234 (1969), 45-64.
  4. L. Carlitz, Note on irreducibility of the Bernoulli and Euler polynomials, Duke Math. J. 19 (1952), 475-481.
  5. L. Carlitz, The irreducibility of the Bernoulli polynomial B14(x), Math. Comp. 19 (1965), 667-670.
  6. N. Kimura, On the degree of an irreducible factor of the Bernoulli polynomials, Acta Arith. 50 (1988), 243-249.
  7. P. J. McCarthy, Irreducibility of certain Bernoulli polynomials, Amer. Math. Monthly 68 (1961), 352-353.
  8. P. J. McCarthy, Some irreducibility theorems for Bernoulli polynomials of higher order, Duke Math. J. 27 (1960), 313-318.
  9. P. J. McCarthy, Irreducibility of Bernoulli polynomials of higher order, Canad. J. Math. 14 (1962), 565-567.
  10. I. Niven, H. Zuckerman and H. Montgomery, An Introduction to the Theory of Numbers, 5th ed., Wiley, 1991.
  11. N. E. Nörlund, Differenzenrechnung, Springer, 1924.
  12. S. Roman, The Umbral Calculus, Academic Press, 1984.
Pages:
329-342
Main language of publication
English
Received
1991-09-04
Accepted
1992-06-23
Published
1992
Exact and natural sciences