ArticleOriginal scientific text

Title

Lattice points in large convex bodies, II

Authors 1, 2

Affiliations

  1. Mathematische Fakultät, Friedrich-Schiller-Universität, D-O-6900 Jena, Germany
  2. Institut für Mathematik, Universität für Bodenkultur, Gregor Mendel-Strasse 33, A-1180 Wien, Austria

Bibliography

  1. S. Bochner, Die Poissonsche Summationsformel in mehreren Veränderlichen, Math. Ann. 106 (1932), 56-63.
  2. T. Bonnesen und W. Fenchel, Theorie der konvexen Körper, Springer, Berlin 1934.
  3. F. Fricker, Einführung in die Gitterpunktlehre, Birkhäuser, Basel 1982.
  4. E. Hlawka, Über Integrale auf konvexen Körpern I, Monatsh. Math. 54 (1950), 1-36.
  5. E. Hlawka, Integrale auf konvexen Körpern II, Monatsh. Math. 81-99.
  6. M. N. Huxley, Exponential sums and lattice points, Proc. London Math. Soc. (3) 60 (1990), 471-502.
  7. M. N. Huxley, Area, lattice points and exponential sums, preprint, 1991.
  8. M. N. Huxley and N. Watt, Exponential sums and the Riemann zeta function, Proc. London Math. Soc. (3) 57 (1988), 1-24.
  9. E. Krätzel, Lattice Points, Kluwer, Dordrecht 1988.
  10. E. Krätzel and W. G. Nowak, Lattice points in large convex bodies, Monatsh. Math. 112 (1991), 61-72.
  11. C. G. Lekkerkerker, Geometry of Numbers, North-Holland, Amsterdam 1969.
  12. W. G. Nowak, On the lattice rest of a convex body in s, Arch. Math. (Basel) 45 (1985), 284-288.
  13. W. G. Nowak, On the lattice rest of a convex body in s, II, Arch. Math. (Basel) 47 (1986), 232-237.
  14. W. G. Nowak, On the lattice rest of a convex body in s, III, Czechoslovak Math. J. 41 (116) (1991), 359-367.
  15. E. C. Titchmarsh, On Epstein's zeta-function, Proc. London Math. Soc. (2) 36 (1934), 485-500.
  16. E. C. Titchmarsh, The lattice points in a circle, Proc. London Math. Soc. (2) 38 (1934), 96-115.
Pages:
285-295
Main language of publication
English
Received
1991-09-30
Published
1992
Exact and natural sciences