ArticleOriginal scientific text
Title
Discrepancy estimates for a class of normal numbers
Authors 1, 2
Affiliations
- Department of Mathematics, Faculty of Education, Yamanashi University, Kofu, 400 Japan
- Department of Mathematics, Keio University, Hiyoshi, Yokohama 223, Japan
Bibliography
- A. S. Besicovitch, The asymptotic distribution of the numerals in the decimal representation of the squares of the natural numbers, Math. Z. 39 (1935), 146-156.
- D. G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc. 8 (1933), 254-260.
- H. Davenport and P. Erdős, Note on normal decimals, Canad. J. Math. 4 (1952), 58-63.
- L.-K. Hua, Additive Theory of Prime Numbers, Transl. Math. Monographs 13, Amer. Math. Soc., Providence, Rhode Island, 1965.
- A. A. Karatsuba, Foundations of Analytic Theory of Numbers, 2nd ed., Nauka, 1983 (in Russian).
- L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York 1974.
- L. Mirsky, A theorem on representations of integers in the scale of r, Scripta Math. 15 (1974), 11-12.
- Y.-N. Nakai and I. Shiokawa, A class of normal numbers, Japan. J. Math. 16 (1990), 17-29.
- Y.-N. Nakai and I. Shiokawa, A class of normal numbers II, in: Number Theory and Cryptography, J. H. Loxton (ed.), London Math. Soc. Lecture Note Ser. 154, Cambridge Univ. Press, 1990, 204-210.
- J. Schiffer, Discrepancy of normal numbers, Acta Arith. 47 (1986), 175-186.
- J. Schoißengeier, Über die Diskrepanz von Folgen (αbⁿ), Sitzungsber. Öst. Akad. Wiss. Math.-Natur. Kl. Abt. II 187 (1978), 225-235.
- E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford Univ. Press, 1951.
- R. C. Vaughan, The Hardy-Littlewood Method, Cambridge Tracts in Math. 80, Cambridge Univ. Press, London 1981.
- I. M. Vinogradov, The Method of Trigonometric Sums in Number Theory, Nauka, 1971 (in Russian).