ArticleOriginal scientific text

Title

On the power-series expansion of a rational function

Authors 1

Affiliations

  1. Department of Mathematics, University of Nottingham, University Park, Nottingham, NG7 2RD, U.K.

Abstract

Introduction. The problem of determining the formula for PS(n), the number of partitions of an integer into elements of a finite set S, that is, the number of solutions in non-negative integers, hs,...,hsk, of the equation h_{s₁} s₁ + ... + h_{s_k} s_k = n, was solved in the nineteenth century (see Sylvester [4] and Glaisher [3] for detailed accounts). The solution is the coefficient ofx[(1-xs)...(1-xsk)]-1,expressionsforwhichtheyderived.Wright[5]dicatedaprmethodbywhichfdpartofthesolution(atthecases_i=i).Thecurrentpapergivesapmethodbywhichthepower-seriesexpansionofarationalfunctionmaybederived.Lemma1iswellknownandgivestheralformofthesolution.Lemma2isalsowellknown.See,forexa,Andrews[1],Exa2,p.98.Lemma3showshowtherecurrencerelationofLemma2becomesofboundeddegreecertacases.Therecurrencerelationisthensolved,andthesolutionisextendedomthesecertacasesallcases.Wethenapplytherest̲vestigatethegrowthofthederenceP_S(n) - P_T(n),whereSandTarefitesets,andpartica̲rwhenthisderenceisbounded.ThederencesP_S^{(0)}(n) - P_T^{(0)}(n)andP_S^{(1)}(n) - P_T^{(1)}(n)arealsoconsred,whereP_S^{(0)}(resp.P_S^{(1)}!$!) denotes the number of partitions of n into elements of S with an even (resp. odd) number of parts.

Bibliography

  1. G. E. Andrews, Partitions, originally: Encyclopedia of Mathematics, Vol. 2, Addison-Wesley, reprinted by Cambridge University Press, 1976.
  2. H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, 1980.
  3. J. W. L. Glaisher, Formulae for partitions into given elements, derived from Sylvester's theorem, Quart. J. Math. 40 (1909), 275-348.
  4. J. J. Sylvester, On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order: Excursus on rational functions and partitions, Amer. J. Math. 5 (1882), 119-136.
  5. E. M. Wright, Partitions into k parts, Math. Ann. 142 (1961), 311-316.
Pages:
229-255
Main language of publication
English
Received
1991-02-07
Accepted
1992-04-02
Published
1992
Exact and natural sciences