ArticleOriginal scientific text

Title

A quantitative version of Runge's theorem on diophantine equations

Authors 1

Affiliations

  1. Department of Pure Mathematics, the University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1

Bibliography

  1. Y. André, G-functions and Geometry, Vieweg, Braunschweig 1989.
  2. M. Ayad, Sur le théorème de Runge, Acta Arith. 58 (1991), 203-209.
  3. J. Coates, Construction of rational functions on a curve, Proc. Cambridge Philos. Soc. 68 (1970), 105-123.
  4. B. M. Dwork and A. J. van der Poorten, The Eisenstein constant, Macquarie Math. reports, report No.90-0062R (1991). (To appear in Duke Math. J.).
  5. M. Eichler, Introduction to the Theory of Algebraic Numbers and Functions, Academic Press, London 1966.
  6. G. Eisenstein, Über eine allgemeine Eigenschaft der Reihen-Entwicklungen aller algebraischen Funktionen, Bericht Königl. Preuss. Akad. d. Wiss. zu Berlin (1852), 441-443.
  7. W. J. Ellison, Variations sur un thème de Carl Runge, Séminaire Delange-Pisot- Poitou 13 (1970-71), 9.01-9.04.
  8. A. Grytczuk and A. Schinzel, On Runge's theorem about diophantine equations, to appear in Colloq. Math. Soc. J. Bolyai 60, 1992.
  9. C. Hermite, Cours de M. Hermite rédigé en 1882, 4th ed., Hermann, Paris 1891.
  10. D. L. Hilliker and E. G. Straus, Determination of bounds for the solutions to those binary diophantine equations that satisfy the hypotheses of Runge's Theorem, Trans. Amer. Math. Soc. 280 (1983), 637-657.
  11. D. L. Hilliker and E. G. Straus, On Puiseux series whose curves pass through an infinity of algebraic lattice points, Bull. Amer. Math. Soc. (N.S.) 8 (1983), 59-62.
  12. D. W. Masser, Polynomial bound for Diophantine equations, Amer. Math. Monthly 93 (1980), 486-488.
  13. L. J. Mordell, Diophantine Equations, Academic Press, London 1969.
  14. C. Runge, Über ganzzahlige Lösungen von Gleichungen zwischen zwei Veränder- lichen, J. Reine Angew. Math. 100 (1887), 425-435.
  15. A. Schinzel, An improvement of Runge's Theorem on diophantine equations, Comment. Pontificia Acad. Sci. 2 (1969), 1-9.
  16. W. M. Schmidt, Eisenstein's theorem on power series expansions of algebraic functions, Acta Arith. 56 (1990), 161-179.
  17. T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, Cambridge 1986.
  18. T. Skolem, Diophantische Gleichungen, J. Springer, Berlin 1938; reprinted by Chelsea, New York 1950.
  19. V. G. Sprindžuk, Classical Diophantine Equations in Two Unknowns, Nauka, Moskva 1982 (in Russian).
  20. J. Turk, On the difference between perfect powers, Acta Arith. 45 (1986), 289-307.
  21. R. J. Walker, Algebraic Curves, Princeton University Press, Princeton, New Jersey, 1950.
Pages:
157-172
Main language of publication
English
Received
1991-11-07
Accepted
1992-03-11
Published
1992
Exact and natural sciences