ArticleOriginal scientific text

Title

On certain solutions of the diophantine equation x-y = p(z)

Authors 1

Affiliations

  1. Department of Pure Mathematics, University of Liverpool, P.O. Box 147, Liverpool L69 3BX, U.K.

Bibliography

  1. V. Bergelson, Sets of recurrence of m-actionsand properties of sets of differences in m, J. London Math. Soc. (2) 31 (1985), 295-304.
  2. A. Bertrand-Mathis, Ensembles intersectifs et recurrence de Poincaré, Israel J. Math. 55 (1986), 184-198.
  3. H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi onarithmetic progressions, J. Analyse Math. 31 (1977), 204-256.
  4. H. Furstenberg, Recurrence in Ergodic Theory andCombinatorial Number Theory, Princeton University Press, 1981.
  5. L. K. Hua, Additive Theory of Prime Numbers, Amer. Math. Soc.Transl. 13, 1965.
  6. T. Kamae and M. Mendès France, Van der Corput's difference theorem, Israel J. Math. 31 (1978),335-342.
  7. U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, 1985.
  8. R. Nair, On strong uniform distribution, Acta Arith. 56 (1990), 183-193.
  9. G. Rhin, Sur la répartition modulo 1 des suites f(p), Acta Arith. 23 (1973), 217-248.
  10. A. Sárközy, On difference sets of sequences of integers, II, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 21(1978), 45-53.
  11. A. Sárközy, On difference sets of sequences ofintegers. III, Acta Math. Acad. Sci. Hungar. 31 (3-4) (1978),355-386.
  12. H. Weyl, Über die Gleichverteilung von Zahlenmod. Eins, Math. Ann. 77 (1916), 313-352.
Pages:
61-71
Main language of publication
English
Received
1991-08-16
Accepted
1992-01-31
Published
1992
Exact and natural sciences