ArticleOriginal scientific text
Title
Perfect powers in products of terms in an arithmetical progression III
Authors 1, 2
Affiliations
- School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
- Mathematical Institute, R. U. Leiden, P.O. Box 9512, 2300 RA Leiden, the Netherlands
Bibliography
- P. Erdős, Note on the product of consecutive integers (I), J. London Math. Soc. 14 (1939), 194-198.
- P. Erdős, On the product of consecutive integers III, Indag. Math. 17 (1955), 85-90.
- P. Erdős and J. Turk, Products of integers in short intervals, Acta Arith. 44 (1984), 147-174.
- J.-H. Evertse, On the equation axⁿ-byⁿ=c, Compositio Math. 47 (1982), 289-315.
- J.-H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions to Yⁿ=f(X), Math. Proc. Cambridge Philos. Soc. 100 (1986), 237-248.
- T. N. Shorey, On gaps between numbers with a large prime factor II, Acta Arith. 25 (1974), 365-373.
- T. N. Shorey, Perfect powers in values of certain polynomials at integer points, Math. Proc. Cambridge Philos. Soc. 99 (1986), 195-207.
- T. N. Shorey, Perfect powers in products of integers from a block of consecutive integers, Acta Arith. 49 (1987), 71-79.
- T. N. Shorey, Some exponential diophantine equations, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, 1988, 217-229.
- T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Math. 87, Cambridge University Press, 1986.
- T. N. Shorey and R. Tijdeman, On the greatest prime factor of an arithmetical progression II, Acta Arith. 53 (1990), 499-504.
- T. N. Shorey and R. Tijdeman, Perfect powers in products of terms in an arithmetical progression, Compositio Math. 75 (1990), 307-344.
- T. N. Shorey and R. Tijdeman, On the greatest prime factor of an arithmetical progression III, in: Diophantine Approximation and Transcendental Numbers, Luminy 1990, Ph. Philippon (ed.), to appear.