ArticleOriginal scientific text

Title

The divisor function over arithmetic progressions

Authors 1, 2, 3

Affiliations

  1. Université de Paris-Sud, Mathématique Bât. 425, 91405 Orsay, France
  2. Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903, U.S.A.
  3. Department of Mathematics, Princeton University, Princeton, New Jersey 08544, U.S.A.

Bibliography

  1. [1] A. Adolphson and S. Sperber, Exponential sums and Newton polyhedra, Bull. Amer. Math. Soc. 16 (1987), 282-286.
  2. [2] A. Adolphson and S. Sperber, Exponential sums on (Gₘ)ⁿ, Invent. Math. 101 (1990), 63-79.
  3. [3] E. Fouvry, Sur le problème des diviseurs de Titchmarsh, J. Reine Angew. Math. 357 (1985), 51-76.
  4. [4] J. Friedlander and H. Iwaniec, Incomplete Kloosterman sums and a divisor problem (with appendix by B. J. Birch and E. Bombieri), Ann. of Math. 121 (1985), 319-350.
  5. [De-Weil II] P. Deligne, La conjecture de Weil II, Publ. Math. I.H.E.S. 52 (1981), 313-428.
  6. [SGA] A. Grothendieck et al., Séminaire de Géométrie Algébrique du Bois- Marie, SGA 1, SGA 4, Parts I, II, and III, SGA 4 1/2, SGA 5, SGA 7, Parts I and II, Lecture Notes in Math. 224, 269-270-305, 569, 589, 288-340, Springer, Berlin 1971 to 1977.
  7. [[Ka-ESDE, 7.4] N. Katz, Exponential Sums and Differential Equations, Ann. of Math. Stud. 124, Princeton Univ. Press, 1990.
  8. [Ka-GKM] N. Katz, Gauss Sums, Kloosterman Sums and Monodromy Groups, Ann. of Math. Stud. 116, Princeton Univ. Press, 1988.
  9. [Ka-Lg] N. Katz, Local to global extensions of representations of fundamental groups, Ann. Inst. Fourier (Grenoble) 36 (4) (1986), 59-106.
  10. [Weil] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-207.
Pages:
271-287
Main language of publication
English
Received
1991-03-15
Accepted
1991-06-12
Published
1992
Exact and natural sciences