ArticleOriginal scientific text

Title

Systems of linear forms and covers for star bodies

Authors 1

Affiliations

  1. Department of Mathematics, University of York, York YO1 5DD, England

Bibliography

  1. J. D. Bovey and M. M. Dodson, The fractional dimension of sets whose simultaneous rational approximations have errors with a small product, Bull. London Math. Soc. 10 (1978), 213-218.
  2. J. D. Bovey and M. M. Dodson, The Hausdorff dimension of systems of linear forms, Acta Arith. 45 (1986), 337-358.
  3. J. W. S. Cassels, An Introduction to the Geometry of Numbers, Grundlehren Math. Wiss. 99, Springer, Berlin 1959.
  4. M. M. Dodson, A note on the Hausdorff-Besicovitch dimension of systems of linear forms, Acta Arith. 44 (1985), 87-98.
  5. M. M. Dodson, Star bodies and Diophantine approximation, J. London Math. Soc. 44 (1991), 1-8.
  6. H. G. Eggleston, Sets of fractional dimensions which occur in some problems of number theory, Proc. London Math. Soc. 54 (1951-1952), 42-93.
  7. K. J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Math. 85, Cambridge University Press, Cambridge 1985.
  8. P. Gruber and C. G. Lekkerkerker, Geometry of Numbers, North-Holland, Amsterdam 1987.
  9. W. K. Hayman, Meromorphic Functions, Oxford Math. Monographs, Clarendon Press, Oxford 1964.
  10. V. Jarník, Über die simultanen diophantischen Approximationen, Math. Z. 33 (1931), 505-543.
  11. H. Rüssmann, On the one-dimensional Schrödinger equation with a quasi-periodic potential, Ann. New York Acad. Sci. 357 (1980), 90-107.
  12. V. G. Sprindžuk, Metric Theory of Diophantine Approximations, translated by R. A. Silverman, V. H. Winston & Sons, Washington, D.C., 1979.
  13. K. Yu, Hausdorff dimension and simultaneous rational approximation, J. London Math. Soc. 24 (1981), 79-84
Pages:
119-127
Main language of publication
English
Received
1990-04-24
Accepted
1991-07-26
Published
1992
Exact and natural sciences