ArticleOriginal scientific text
Title
Systems of linear forms and covers for star bodies
Authors 1
Affiliations
- Department of Mathematics, University of York, York YO1 5DD, England
Bibliography
- J. D. Bovey and M. M. Dodson, The fractional dimension of sets whose simultaneous rational approximations have errors with a small product, Bull. London Math. Soc. 10 (1978), 213-218.
- J. D. Bovey and M. M. Dodson, The Hausdorff dimension of systems of linear forms, Acta Arith. 45 (1986), 337-358.
- J. W. S. Cassels, An Introduction to the Geometry of Numbers, Grundlehren Math. Wiss. 99, Springer, Berlin 1959.
- M. M. Dodson, A note on the Hausdorff-Besicovitch dimension of systems of linear forms, Acta Arith. 44 (1985), 87-98.
- M. M. Dodson, Star bodies and Diophantine approximation, J. London Math. Soc. 44 (1991), 1-8.
- H. G. Eggleston, Sets of fractional dimensions which occur in some problems of number theory, Proc. London Math. Soc. 54 (1951-1952), 42-93.
- K. J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Math. 85, Cambridge University Press, Cambridge 1985.
- P. Gruber and C. G. Lekkerkerker, Geometry of Numbers, North-Holland, Amsterdam 1987.
- W. K. Hayman, Meromorphic Functions, Oxford Math. Monographs, Clarendon Press, Oxford 1964.
- V. Jarník, Über die simultanen diophantischen Approximationen, Math. Z. 33 (1931), 505-543.
- H. Rüssmann, On the one-dimensional Schrödinger equation with a quasi-periodic potential, Ann. New York Acad. Sci. 357 (1980), 90-107.
- V. G. Sprindžuk, Metric Theory of Diophantine Approximations, translated by R. A. Silverman, V. H. Winston & Sons, Washington, D.C., 1979.
- K. Yu, Hausdorff dimension and simultaneous rational approximation, J. London Math. Soc. 24 (1981), 79-84