PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1992 | 61 | 2 | 101-118
Tytuł artykułu

Modular forms and class number congruences

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Czasopismo
Rocznik
Tom
61
Numer
2
Strony
101-118
Opis fizyczny
Daty
wydano
1992
otrzymano
1989-12-19
poprawiono
1991-06-07
Twórcy
autor
  • Department of Mathematics, the American University, 4400 Massachusetts Ave., Washington, D.C., 20016 U.S.A.
Bibliografia
  • [1] Y. Amice et J. Fresnel, Fonctions zêta p-adiques des corps de nombres abéliens réels, Acta Arith. 20 (1972), 353-384.
  • [2] P. Barrucand and H. Cohn, Note on primes of type x²+32y², class number, and residuacity, J. Reine Angew. Math. 238 (1969), 67-70.
  • [3] H. Cohn and G. Cooke, Parametric form of an eight class field, Acta Arith. 30 (1976), 367-377.
  • [4] P. Colmez, Résidu en s=1 des fonctions zêta p-adiques, Invent. Math. 91 (1988), 371-389.
  • [5] P. Conner and J. Hurrelbrink, Class Number Parity, Ser. Pure Math. 8, World Scientific, 1988.
  • [6] A. Costa, Modular forms and class number congruences, Ph.D. thesis, University of Pennsylvania, 1989.
  • [7] P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227-286.
  • [8] P.-J. Desnoux, Congruences dyadiques entre nombres de classes de corps quadratiques, Manuscripta Math. 62 (1988), 163-179.
  • [9] G. Gras, Relations congruentielles linéaires entre nombres de classes de corps quadratiques, Acta Arith. 52 (1989), 147-162.
  • [10] K. Hardy and K. Williams, Congruences modulo 16 for the class numbers of complex quadratic fields, J. Number Theory 27 (1989), 178-195.
  • [11] M. Hikita, On the congruences for the class numbers of the quadratic fields whose discriminants are divisible by 8, J. Number Theory 23 (1986), 86-101.
  • [12] P. Kaplan, Unités de norme -1 de Q(√p) et corps de classes de degré 8 de Q(√-p) où p est un nombre premier congru à 1 modulo 8, Acta Arith. 32 (1977), 239-243.
  • [13] --, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. Reine Angew. Math. 284 (1976), 313-363.
  • [14] E. Lehmer, On the quadratic character of some quadratic surds, J. Reine Angew. Math. 250 (1971), 42-48.
  • [15] R. Pioui, Mesures de Haar p-adiques et interprétation arithmétique de 1/2 L₂(χ,s) - 1/2 L₂(χ,t), s,t∈ ℚ₂ (χ quadratique), Ph.D. thesis, Université de Franche-Comté, Besançon 1990.
  • [16] A. Pizer, On the 2-part of the class number of imaginary quadratic number fields, J. Number Theory 8 (1976), 184-192.
  • [17] L. Rédei, Ein neues zahlentheoretisches Symbol mit Anwendungen auf die Theorie der quadratischen Zahlkörper. I, J. Reine Angew. Math. 180 (1939), 1-43.
  • [18] J. Rogawski and J. Tunnell, On Artin L-functions associated to Hilbert modular forms of weight one , Invent. Math. 74 (1983), 1-42.
  • [19] J.-P. Serre, Modular forms of weight one and Galois representations, in: Algebraic Number Fields, Academic Press, London 1977, 193-268.
  • [20] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), 637-679.
  • [21] P. Stevenhagen, Class groups and governing fields, Ph.D. thesis, University of California at Berkeley, 1988.
  • [22] T. Uehara, On linear congruence relations between class numbers of quadratic fields, J. Number Theory 34 (1990), 362-392.
  • [23] L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer, 1982.
  • [24] K. S. Williams, On the class number of Q(√-p) modulo 16, for p≡ 1(mod 8) a prime , Acta Arith. 39 (1981), 381-398.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav61i2p101bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.