ArticleOriginal scientific text

Title

Modular forms and class number congruences

Authors 1

Affiliations

  1. Department of Mathematics, the American University, 4400 Massachusetts Ave., Washington, D.C., 20016 U.S.A.

Bibliography

  1. Y. Amice et J. Fresnel, Fonctions zêta p-adiques des corps de nombres abéliens réels, Acta Arith. 20 (1972), 353-384.
  2. P. Barrucand and H. Cohn, Note on primes of type x²+32y², class number, and residuacity, J. Reine Angew. Math. 238 (1969), 67-70.
  3. H. Cohn and G. Cooke, Parametric form of an eight class field, Acta Arith. 30 (1976), 367-377.
  4. P. Colmez, Résidu en s=1 des fonctions zêta p-adiques, Invent. Math. 91 (1988), 371-389.
  5. P. Conner and J. Hurrelbrink, Class Number Parity, Ser. Pure Math. 8, World Scientific, 1988.
  6. A. Costa, Modular forms and class number congruences, Ph.D. thesis, University of Pennsylvania, 1989.
  7. P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227-286.
  8. P.-J. Desnoux, Congruences dyadiques entre nombres de classes de corps quadratiques, Manuscripta Math. 62 (1988), 163-179.
  9. G. Gras, Relations congruentielles linéaires entre nombres de classes de corps quadratiques, Acta Arith. 52 (1989), 147-162.
  10. K. Hardy and K. Williams, Congruences modulo 16 for the class numbers of complex quadratic fields, J. Number Theory 27 (1989), 178-195.
  11. M. Hikita, On the congruences for the class numbers of the quadratic fields whose discriminants are divisible by 8, J. Number Theory 23 (1986), 86-101.
  12. P. Kaplan, Unités de norme -1 de Q(√p) et corps de classes de degré 8 de Q(√-p) où p est un nombre premier congru à 1 modulo 8, Acta Arith. 32 (1977), 239-243.
  13. --, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. Reine Angew. Math. 284 (1976), 313-363.
  14. E. Lehmer, On the quadratic character of some quadratic surds, J. Reine Angew. Math. 250 (1971), 42-48.
  15. R. Pioui, Mesures de Haar p-adiques et interprétation arithmétique de 1/2 L₂(χ,s) - 1/2 L₂(χ,t), s,t∈ ℚ₂ (χ quadratique), Ph.D. thesis, Université de Franche-Comté, Besançon 1990.
  16. A. Pizer, On the 2-part of the class number of imaginary quadratic number fields, J. Number Theory 8 (1976), 184-192.
  17. L. Rédei, Ein neues zahlentheoretisches Symbol mit Anwendungen auf die Theorie der quadratischen Zahlkörper. I, J. Reine Angew. Math. 180 (1939), 1-43.
  18. J. Rogawski and J. Tunnell, On Artin L-functions associated to Hilbert modular forms of weight one , Invent. Math. 74 (1983), 1-42.
  19. J.-P. Serre, Modular forms of weight one and Galois representations, in: Algebraic Number Fields, Academic Press, London 1977, 193-268.
  20. G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), 637-679.
  21. P. Stevenhagen, Class groups and governing fields, Ph.D. thesis, University of California at Berkeley, 1988.
  22. T. Uehara, On linear congruence relations between class numbers of quadratic fields, J. Number Theory 34 (1990), 362-392.
  23. L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer, 1982.
  24. K. S. Williams, On the class number of Q(√-p) modulo 16, for p≡ 1(mod 8) a prime , Acta Arith. 39 (1981), 381-398.
Pages:
101-118
Main language of publication
English
Received
1989-12-19
Accepted
1991-06-07
Published
1992
Exact and natural sciences