ArticleOriginal scientific text

Title

A class of transcendental numbers with explicit g-adic expansion and the Jacobi-Perron algorithm

Authors 1

Affiliations

  1. Faculty of General Education International Junior College Ekoda 4-15-1, Nakano-ku Tokyo 165, Japan

Abstract

In this paper, we give transcendental numbers φ and ψ such that (i) both φ and ψ have explicit g-adic expansions, and simultaneously, (ii) the vector ^t(φ,ψ) has an explicit expression in the Jacobi-Perron algorithm (cf. Theorem 1). Our results can be regarded as a higher-dimensional version of some of the results in [1]-[5] (see also [6]-[8], [10], [11]). The numbers φ and ψ have some connection with algebraic numbers with minimal polynomials x³ - kx² - lx - 1 satisfying (1.1) k ≥ l ≥0, k + l ≥ 2 (k,l ∈ ℤ). In the special case k = l = 1, our Theorems 1-3 have been shown in [15] by a different method using the theory of representation of numbers by Fibonacci numbers of third degree.

Bibliography

  1. W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
  2. P. E. Böhmer, Über die Transzendenz gewisser dyadischer Brüche, Math. Ann. 96 (1927), 367-377; Berichtigung, Proc. Amer. Math. Soc. 735.
  3. P. Bundschuh, Über eine Klasse reeller transzendenter Zahlen mit explizit angebbarer g-adischer und Kettenbruch-Entwicklung, J. Reine Angew. Math. 318 (1980), 110-119.
  4. L. V. Danilov, Some classes of transcendental numbers, Mat. Zametki 12 (2) (1972), 149-154 (in Russian); English transl.: Math. Notes 12 (1972), 524-527.
  5. J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), 29-32.
  6. J. H. Loxton and A. J. van der Poorten, Arithmetic properties of certain functions in several variables, III, Bull. Austral. Math. Soc. 16 (1977), 15-47.
  7. K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366.
  8. D. Masser, A vanishing theorem for power series, Invent. Math. 67 (1982), 275-296.
  9. E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Nauka, Moscow 1988, 168-175 (in Russian).
  10. K. Nishioka, Evertse theorem in algebraic independence, Arch. Math. (Basel) 53 (1989), 159-170.
  11. K. Nishioka, I. Shiokawa and J. Tamura, Arithmetical properties of certain power series, J. Number Theory, to appear.
  12. V. I. Parusnikov, The Jacobi-Perron algorithm and simultaneous approximation of functions, Mat. Sb. 114 (156) (2) (1981), 322-333 (in Russian).
  13. A. Salomaa, Jewels of Formal Language Theory, Pitman, 1981.
  14. A. Salomaa, Computation and Automata, Cambridge Univ. Press, 1985.
  15. J. Tamura, Transcendental numbers having explicit g-adic and Jacobi-Perron expansions, in: Séminaire de Théorie des Nombres de Bordeaux, to appear.
Pages:
51-67
Main language of publication
English
Received
1990-11-30
Accepted
1991-06-18
Published
1992
Exact and natural sciences