ArticleOriginal scientific text

Title

When the group-counting function assumes a prescribed integer value at squarefree integers frequently, but not extremely frequently

Authors 1

Affiliations

  1. Mathematics Department, Boston College, Boston, Massachusetts 02167, U.S.A.

Keywords

group-counting, squarefree order, lower bound

Bibliography

  1. P. Erdős, Some asymptotic formulas in number theory, J. Indian Math. Soc. 12 (1948), 75-78.
  2. P. Erdős, M. R. Murty, and V. K. Murty, On the enumeration of finite groups, J. Number Theory 25 (1987), 360-378.
  3. H. Halberstam and H.-E. Richert, Sieve Methods, London Math. Soc. Monographs 4, Academic Press, London 1974.
  4. H. Halberstam and K. F. Roth, Sequences, Springer, New York 1983.
  5. O. Hölder, Die Gruppen mit quadratfreier Ordnungszahl, Nach. Königl. Gessell. der Wiss. Göttingen Math.-Phys. Kl. 1895, 211-229.
  6. Yu. V. Linnik, On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon, Mat. Sb. (N.S.) 15 (57) (1944), 347-368.
  7. M.-G. Lu, The asymptotic formula for F₂(x), Sci. Sinica Ser. A 30 (1987), 262-278.
  8. M. R. Murty and V. K. Murty, On the number of groups of a given order, J. Number Theory 18 (1984), 178-191.
  9. K. K. Norton, On the number of restricted prime factors of an integer. I, Illinois J. Math. 20 (1976), 681-705.
  10. C. A. Spiro, The probability that the number of groups of squarefree order is two more than a fixed prime, Proc. London Math. Soc. 60 (1990), 444-470.
  11. T. Szele, Über die endlichen Ordnungszahlen, zu denen nur eine Gruppe gehört, Comment. Math. Helv. 20 (1947), 265-267.
  12. J. Szép, On finite groups which are necessarily commutative, Comment. Math. Helv., 223-224.
Pages:
1-12
Main language of publication
English
Received
1990-03-29
Published
1992
Exact and natural sciences