ArticleOriginal scientific text
Title
The imaginary quadratic fields of class number 4
Authors 1
Affiliations
- The Supercomputing Research Center, 17100 Science Drive, Bowie, Maryland 20715, U.S.A.
Bibliography
- N. C. Ankeny, The least quadratic non residue, Ann. of Math. (2) 55 (1952), 65-72.
- A. Baker, A remark on the class number of quadratic fields, Bull. London Math. Soc. 1 (1966), 98-102.
- A. Baker, Imaginary quadratic fields of class number 2, Ann. of Math. 94 (1971), 139-152.
- P. T. Bateman and E. Grosswald, Positive integers expressible as a sum of 3 squares in essentially only one way, J. Number Theory 19 (1984), 301-308.
- Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York 1966.
- D. A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp. 31 (1977), 786-796.
- P. Chowla and A. Selberg, On Epstein's zeta function, J. Reine Angew. Math. 227 (1967), 86-110.
- H. Davenport, Multiplicative Number Theory, 2nd ed., Graduate Texts in Math. 74, Springer, New York 1980.
- C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function, Royal Society Math. Tables, Vol. 6, Cambridge 1960.
- H. Heilbronn, On the class number in imaginary quadratic fields, Quart. J. Math. Oxford Ser. 25 (1934), 150-160.
- C. F. Gauss, Disquisitiones Arithmeticae, Yale Univ. Press, 1966.
- D. M. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa (4) 3 (1976), 623-663.
- B. Gross et D. Zagier, Points de Heegner et derivées de fonctions L, C. R. Acad. Sci. Paris 297 (1983), 85-87.
- D. H. Lehmer, E. Lehmer, and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp. 24 (1970), 433-451.
- H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, Acta Arith. 24 (1974), 529-542.
- L. J. Mordell, On the rational solutions of the indeterminate equations of the 3rd and 4rth degrees, Proc. Cambridge Philos. Soc. 21 (1922), 179-192.
- J. Oesterlé, Nombres de classes des corps quadratiques imaginaires, Sém. Bourbaki, 1983-1984, exp. 631.
- H. M. Stark, A complete determination of the complex quadratic fields of class number 1, Michigan Math. J. 14 (1967), 1-27.
- H. M. Stark, On complex quadratic fields with class number two, Math. Comp. 29 (1975), 289-302.
- H. M. Stark, L-functions and character sums for quadratic forms (II), Acta Arith. 15 (1969), 307-317.
- E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford Univ. Press, London 1951.