ArticleOriginal scientific text

Title

Lower bounds for a certain class of error functions

Authors 1, 1

Affiliations

  1. J. W. Goethe-Universität, Fachbereich Mathematik, Robert-Mayer-Str. 6-10, D-6000 Frankfurt am Main, Federal Republic of Germany

Bibliography

  1. T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York 1976.
  2. R. Dedekind, Gesammelte mathematische Werke. Erster Band, R. Fricke, E. Noether and Ö. Ore (eds.), Vieweg, Braunschweig 1930.
  3. P. Erdős, On the sum kxd(f(k)), J. London Math. Soc. 27 (1952), 7-15.
  4. P. Erdős and H. N. Shapiro, On the changes of sign of a certain error function, Canad. J. Math. 3 (1951), 375-385.
  5. H. Halberstam and H.-E. Richert, On a result of R. R. Hall, J. Number Theory 11 (1979), 76-89.
  6. J. Herzog and P. R. Smith, Asymptotic results on the distribution of integers possessing weak order (mod m), preprint, Frankfurt 1990.
  7. G. J. Janusz, Algebraic Number Fields, Academic Press, New York 1973.
  8. V. S. Joshi, Order free integers (mod m), in: Number Theory, Mysore 1981, Lecture Notes in Math. 938, Springer, New York 1982, 93-100.
  9. J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, in: Algebraic Number Fields: L-functions and Galois Properties, Proc. Sympos. Durham 1975, Academic Press, London 1977, 409-464.
  10. E. Landau, Über die zahlentheoretische Funktion μ(k), in: Collected Works, Vol. 2, L. Mirsky et al. (eds.), Thales Verlag, Essen 1986, 60-93.
  11. E. Landau, Vorlesungen über Zahlentheorie, Chelsea, New York 1950.
  12. F. Mertens, Über einige asymptotische Gesetze der Zahlentheorie, J. Reine Angew. Math. 77 (1874), 289-338.
  13. H. L. Montgomery, Fluctuations in the mean of Euler's phi function, Proc. Indian Acad. Sci. (Math. Sci.) 97 (1987), 239-245.
  14. S. S. Pillai and S. D. Chowla, On the error terms in some asymptotic formulae in the theory of numbers (I), J. London Math. Soc. 5 (1930), 95-101.
  15. J. H. Proschan, On the changes of sign of a certain class of error functions, Acta Arith. 17 (1971), 407-430.
  16. H. Stevens, Generalizations of the Euler φ-function, Duke Math. J. 38 (1971), 181-186.
  17. A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutsch. Verlag Wiss., Berlin 1963.
Pages:
289-305
Main language of publication
English
Received
1990-09-17
Published
1992
Exact and natural sciences