J. W. Goethe-Universität, Fachbereich Mathematik, Robert-Mayer-Str. 6-10, D-6000 Frankfurt am Main, Federal Republic of Germany
Bibliografia
[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York 1976.
[2] R. Dedekind, Gesammelte mathematische Werke. Erster Band, R. Fricke, E. Noether and Ö. Ore (eds.), Vieweg, Braunschweig 1930.
[3] P. Erdős, On the sum $∑_{k≤x}d(f(k))$, J. London Math. Soc. 27 (1952), 7-15.
[4] P. Erdős and H. N. Shapiro, On the changes of sign of a certain error function, Canad. J. Math. 3 (1951), 375-385.
[5] H. Halberstam and H.-E. Richert, On a result of R. R. Hall, J. Number Theory 11 (1979), 76-89.
[6] J. Herzog and P. R. Smith, Asymptotic results on the distribution of integers possessing weak order (mod m), preprint, Frankfurt 1990.
[7] G. J. Janusz, Algebraic Number Fields, Academic Press, New York 1973.
[8] V. S. Joshi, Order free integers (mod m), in: Number Theory, Mysore 1981, Lecture Notes in Math. 938, Springer, New York 1982, 93-100.
[9] J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, in: Algebraic Number Fields: L-functions and Galois Properties, Proc. Sympos. Durham 1975, Academic Press, London 1977, 409-464.
[10] E. Landau, Über die zahlentheoretische Funktion μ(k), in: Collected Works, Vol. 2, L. Mirsky et al. (eds.), Thales Verlag, Essen 1986, 60-93.
[11] E. Landau, Vorlesungen über Zahlentheorie, Chelsea, New York 1950.
[12] F. Mertens, Über einige asymptotische Gesetze der Zahlentheorie, J. Reine Angew. Math. 77 (1874), 289-338.
[13] H. L. Montgomery, Fluctuations in the mean of Euler's phi function, Proc. Indian Acad. Sci. (Math. Sci.) 97 (1987), 239-245.
[14] S. S. Pillai and S. D. Chowla, On the error terms in some asymptotic formulae in the theory of numbers (I), J. London Math. Soc. 5 (1930), 95-101.
[15] J. H. Proschan, On the changes of sign of a certain class of error functions, Acta Arith. 17 (1971), 407-430.
[16] H. Stevens, Generalizations of the Euler φ-function, Duke Math. J. 38 (1971), 181-186.
[17] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutsch. Verlag Wiss., Berlin 1963.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav60i3p289bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.