PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1991-1992 | 60 | 3 | 233-277
Tytuł artykułu

Effective finiteness theorems for decomposable forms of given discriminant

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Czasopismo
Rocznik
Tom
60
Numer
3
Strony
233-277
Opis fizyczny
Daty
wydano
1992
otrzymano
1990-08-21
poprawiono
1991-03-13
Twórcy
  • Department of Mathematics and Computer Science, University of Leiden, P.O. Box 9512 2300 RA Leiden, the Netherlands
autor
  • Mathematical Institute, Lajos Kossuth University, H-4010 Debrecen, Hungary
Bibliografia
  • [1] B. J. Birch and J. R. Merriman, Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc. 25 (1972), 385-394.
  • [2] Z. I. Borevich and I. R. Shafarevich, Number Theory, 2nd ed., Academic Press, New York and London 1967.
  • [3] J. H. Evertse, Decomposable form equations with a small linear scattering, to appear.
  • [4] J. H. Evertse and K. Győry, Decomposable form equations, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, 1988, 175-202.
  • [5] J. H. Evertse and K. Győry, Thue-Mahler equations with a small number of solutions, J. Reine Angew. Math. 399 (1989), 60-80.
  • [6] J. H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant, Compositio Math. 79 (1991), 169-204.
  • [7] J. H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, S-unit equations and their applications, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, 1988, 110-174.
  • [8] K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith. 23 (1973), 419-426.
  • [9] K. Győry, On polynomials with integer coefficients and given discriminant, V, p-adic generalizations, Acta Math. Acad. Sci. Hungar. 32 (1978), 175-190.
  • [10] K. Győry, On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helv. 54 (1979), 583-600.
  • [11] K. Győry, On S-integral solutions of norm form, discriminant form and index form equations, Studia Sci. Math. Hungar. 16 (1981), 149-161.
  • [12] K. Győry, Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely generated domains, J. Reine Angew. Math. 346 (1984), 54-100.
  • [13] G. J. Janusz, Algebraic Number Fields, Academic Press, New York and London 1973.
  • [14] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. 72 (1952), 327-340.
  • [15] S. Lang, Algebraic Number Theory, Springer, 1970.
  • [16] K. Mahler, Über die Annäherung algebraischer Zahlen durch periodische Algorithmen, Acta Math. 68 (1937), 109-144.
  • [17] T. Nagell, Contributions à la théorie des modules et des anneaux algébriques, Ark. Mat. 6 (1965), 161-178.
  • [18] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Polish Scientific Publishers, Warszawa 1974.
  • [19] H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135-152.
  • [20] O. Zariski and P. Samuel, Commutative Algebra, Vol. I, D. Van Nostrand Co., Toronto-New York-London 1958.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav60i3p233bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.