ArticleOriginal scientific text

Title

On p-adic L-functions and the Riemann-Hurwitz genus formula

Authors 1

Affiliations

  1. Department of Mathematics, Kaist, Yusung-gu, Taejon 305-701, South Korea

Bibliography

  1. [Ca] P. Cassou-Nogues, p-adic L-functions for totally real number fields, in: Proceedings of the Conference on p-adic Analysis, Report 7806, Katholieke Univ., Nijmegen, 1978, 24-37.
  2. [Co1] J. Coates, On K₂ and some classical conjectures in algebraic number theory, Ann. of Math. 95 (1972), 99-116.
  3. [Co2] J. Coates, p-adic L-functions and Iwasawa theory, in: Algebraic Number Fields, A. Fröhlich (ed.), Academic Press, New York 1977, 269-353.
  4. [D-R] P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227-286.
  5. [G-M] R. Gold and M. Madan, Iwasawa invariants, Comm. Algebra 13 (7) (1985), 1559-1578.
  6. [Han] S. Han, Two applications of p-adic L-functions, Thesis, Ohio State University, 1987.
  7. [Iw] K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tôhoku Math. J. (2) 33 (2) (1981), 263-288.
  8. [Ki] Y. Kida, l-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), 519-528.
  9. [Ri] K. Ribet, Report on p-adic L-functions over totally real fields, Astérisque 61 (1979), 177-192.
  10. [Se] J.-P. Serre, Sur le résidu de la fonction zêta p-adique d'un corps de nombres, C. R. Acad. Sci. Paris 287 (1978), 183-188.
  11. [Si] W. Sinnott, On p-adic L-functions and the Riemann-Hurwitz genus formula, Compositio Math. 53 (1984), 3-17.
  12. [Wa] L. Washington, Introduction to Cyclotomic Fields, Springer, New York 1982.
Pages:
97-104
Main language of publication
English
Received
1986-01-09
Accepted
1991-02-18
Published
1991
Exact and natural sciences