ArticleOriginal scientific text
Title
On p-adic L-functions and the Riemann-Hurwitz genus formula
Authors 1
Affiliations
- Department of Mathematics, Kaist, Yusung-gu, Taejon 305-701, South Korea
Bibliography
- [Ca] P. Cassou-Nogues, p-adic L-functions for totally real number fields, in: Proceedings of the Conference on p-adic Analysis, Report 7806, Katholieke Univ., Nijmegen, 1978, 24-37.
- [Co1] J. Coates, On K₂ and some classical conjectures in algebraic number theory, Ann. of Math. 95 (1972), 99-116.
- [Co2] J. Coates, p-adic L-functions and Iwasawa theory, in: Algebraic Number Fields, A. Fröhlich (ed.), Academic Press, New York 1977, 269-353.
- [D-R] P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227-286.
- [G-M] R. Gold and M. Madan, Iwasawa invariants, Comm. Algebra 13 (7) (1985), 1559-1578.
- [Han] S. Han, Two applications of p-adic L-functions, Thesis, Ohio State University, 1987.
- [Iw] K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tôhoku Math. J. (2) 33 (2) (1981), 263-288.
- [Ki] Y. Kida, l-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), 519-528.
- [Ri] K. Ribet, Report on p-adic L-functions over totally real fields, Astérisque 61 (1979), 177-192.
- [Se] J.-P. Serre, Sur le résidu de la fonction zêta p-adique d'un corps de nombres, C. R. Acad. Sci. Paris 287 (1978), 183-188.
- [Si] W. Sinnott, On p-adic L-functions and the Riemann-Hurwitz genus formula, Compositio Math. 53 (1984), 3-17.
- [Wa] L. Washington, Introduction to Cyclotomic Fields, Springer, New York 1982.