ArticleOriginal scientific textOn the number of solutions of the generalized Ramanujan-Nagell equation
Title
On the number of solutions of the generalized Ramanujan-Nagell equation
Authors 1
Affiliations
- Research Department, Changsha Railway Institute, Changsha, Hunan, China
Bibliography
- F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1981), 389-410.
- P. G. L. Dirichlet, Sur une propriété des formes quadratiques à déterminant positif, J. Math. Pures Appl. (2) 1 (1856), 76-79.
- L.-K. Hua, Introduction to Number Theory, Springer, Berlin 1982.
- M.-H. Le, The diophantine equation
, Proc. Amer. Math. Soc. 106 (1989), 599-604. - R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983.
- O. Perron, Die Lehre von den Kettenbrüchen, Teubner, Leipzig 1929.
- K. Petr, Sur l'équation de Pell, Časopis Pest. Mat. Fys. 56 (1927), 57- 66 (in Czech).
- N. Tzanakisand J. Wolfskill, The diophantine equation
, with an application to coding theory, J. Number Theory 26 (1987), 96-116.