ArticleOriginal scientific text

Title

On the number of solutions of the generalized Ramanujan-Nagell equation x²-D=2n+2

Authors 1

Affiliations

  1. Research Department, Changsha Railway Institute, Changsha, Hunan, China

Bibliography

  1. F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1981), 389-410.
  2. P. G. L. Dirichlet, Sur une propriété des formes quadratiques à déterminant positif, J. Math. Pures Appl. (2) 1 (1856), 76-79.
  3. L.-K. Hua, Introduction to Number Theory, Springer, Berlin 1982.
  4. M.-H. Le, The diophantine equation x²=4qn+4qm+1, Proc. Amer. Math. Soc. 106 (1989), 599-604.
  5. R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass., 1983.
  6. O. Perron, Die Lehre von den Kettenbrüchen, Teubner, Leipzig 1929.
  7. K. Petr, Sur l'équation de Pell, Časopis Pest. Mat. Fys. 56 (1927), 57- 66 (in Czech).
  8. N. Tzanakisand J. Wolfskill, The diophantine equation x²=4qa2+4q+1, with an application to coding theory, J. Number Theory 26 (1987), 96-116.
Pages:
149-167
Main language of publication
English
Received
1990-09-07
Accepted
1991-02-11
Published
1991
Exact and natural sciences