ArticleOriginal scientific text

Title

Generalized Rudin-Shapiro sequences

Authors 1, 2

Affiliations

  1. CNRS URA 226, Université Bordeaux I, Mathématiques et Informatique, 351, Cours de la Libération, F-33405 Talence Cedex, France
  2. Université de Provence, URA 225, Case 96, 3, Place Victor-Hugo, F-13331 Marseille Cedex 3, France

Bibliography

  1. J.-P. Allouche, Les suites de Rudin-Shapiro généralisées: des suites déterministes de 'dimension' maximale, in: Colloque 'Fractals', C.I.R.M., Marseille 1986.
  2. J.-P. Allouche and M. Mendès France, On an extremal property of the Rudin-Shapiro sequence, Mathematika 32 (1985), 33-38.
  3. J.-P. Allouche and M. Mendès France, Suite de Rudin-Shapiro et modèle d'Ising, Bull. Soc. Math. France 113 (1985), 275-283.
  4. D. W. Boyd, J. Cook and P. Morton, On sequences of ±1's defined by binary patterns, Dissertationes Math. 283 (1989).
  5. J. Brillhart and L. Carlitz, Note on the Shapiro polynomials, Proc. Amer. Math. Soc. 25 (1970), 114-118.
  6. J. Brillhart, P. Erdős and P. Morton, On sums of Rudin-Shapiro coefficients II, Pacific J. Math. 107 (1978), 39-69.
  7. J. Brillhart und P. Morton, Über Summen von Rudin-Shapiroschen Koeffizienten, Illinois J. Math. 22 (1978), 126-148.
  8. G. Christol, T. Kamae, M. Mendès France et G. Rauzy, Suites algébriques, automates et substitutions, Bull. Soc. Math. France 108 (1980), 401-419.
  9. A. Cobham, Uniform tag-sequences, Math. Systems Theory 6 (1972), 164-192.
  10. J. Coquet and P. Liardet, A metric study involving independent sequences, J. Analyse Math. 49 (1987), 15-53.
  11. A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259-265.
  12. J.-P. Kahane, Hélices et quasi-hélices, in: Math. Anal. Applic., Part B, Adv. in Math. Suppl. Stud. 7B, 1981, 417-433.
  13. L. Kuipers and H. Niederreiter, Uniform Distributions of Sequences, John Wiley & Sons, New York 1974.
  14. M. Lemańczyk, Toeplitz Z₂-extensions, Ann. Inst. H. Poincaré 24 (1) (1988), 1-43.
  15. P. Liardet, Propriétés harmoniques de la numération, d'après Jean Coquet, in: Colloque S.M.F.-C.N.R.S. 'Jean Coquet', Publications Mathématiques d'Orsay 88-02, Orsay 1988, 1-35.
  16. P. Liardet, Automata and generalized Rudin-Shapiro sequences, Arbeitsbericht, Math. Institut der Universität Salzburg, 1990.
  17. M. Mendès France et G. Tenenbaum, Dimension des courbes planes, papiers pliés et suite de Rudin-Shapiro, Bull. Soc. Math. France 109 (1981), 207-215.
  18. M. Queffélec, Une nouvelle propriété des suites de Rudin-Shapiro, Ann. Inst. Fourier (Grenoble) 37 (2) (1987), 115-138.
  19. M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Math. 1294, Springer, 1987.
  20. D. Rider, Transformations of Fourier coefficients, Pacific J. Math. 19 (1966), 347-355.
  21. W. Rudin, Some theorems on Fourier coefficients, Proc. Amer. Math. Soc. 10 (1959), 855-859.
  22. B. Saffari, Une fonction extrémale liée à la suite de Rudin-Shapiro, C. R. Acad. Sci. Paris 303 (1986), 97-100.
  23. A. Salem and A. Zygmund, Some properties of trigonometric series whose terms have random signs, Acta Math. 91 (1954), 245-301.
  24. H. S. Shapiro, Extremal problems for polynomials and power series, Thesis, M.I.T., 1951.
  25. A. P. Street, J. S. Wallis and W. D. Wallis, Combinatorics: Room Squares, Sum-free Sets, Hadamard Matrices, Lecture Notes in Math. 292, Springer, 1972.
Pages:
1-27
Main language of publication
English
Received
1989-11-03
Accepted
1990-11-30
Published
1991
Exact and natural sciences