Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Cover of the book
Tytuł książki

Theory of the integral

Zawartość
Abstrakt
Informacje o książce
Zasoby
Abstrakt
PREFACE ERRATA CHAPTER I. The integral in an abstract space § 1. Introduction § 2. Terminology and notation § 3. Abstract space X § 4. Additive classes of sets § 5. Additive functions of a set § 6. The variations of an additive function § 7. Measurable functions § 8. Elementary operations on measurable functions § 9. Measure § 10. Integral § 11. Fundamental properties of the integral § 12. Integration of sequences of functions § 13. Absolutely continuous additive functions of a set § 14. The Lebesgue decomposition of an additive function § 15. Change of measure CHAPTER II. Carathéodory measure § 1. Preliminary remarks § 2. Metrical space § 3. Continuous and semi-continuous functions § 4. Carathéodory measure § 5. The operation (A) § 6. Regular sets § 7. Borel sets § 8. Length of a set § 9. Complete space CHAPTER III. Functions of bounded variation and the Lebesgue-Stieltjes integral § 1. Euclidean spaces § 2. Intervals and figures § 3. Functions of an interval § 4. Functions of an interval that are additive and of bounded variation § 5. Lebesgue-Stieltjes integral. Lebesgue integral and measure § 6. Measure defined by a non-negative additive function of an interval § 7. Theorems of Lusin and Vitali-Carathéodory § 8. Theorem of Fubini § 9. Fubini's theorem in abstract spaces § 10. Geometrical definition of the Lebesgue-Stieltjes integral § 11. Translations of sets § 12. Absolutely continuous functions of an interval § 13. Functions of a real variable § 14. Integration by parts CHAPTER IV. Derivation of additive functions of a set and of an interval § 1. Introduction § 2. Derivates of functions of a set and of an interval § 3. Vitali's Covering Theorem § 4. Theorems on measurability of derivates § 5. Lebesgue's Theorem § 6. Derivation of the indefinite integral § 7. The Lebesgue decomposition § 8. Rectifiable curves § 9. De la Vallée Poussin's theorem § 10. Points of density for a set § 11. Ward's theorems on derivation of additive functions of an interval § 12. A theorem of Hardy-Littlewood § 13. Strong derivation of the indefinite integral § 14. Symmetrical derivates § 15. Derivation in abstract spaces § 16. Torus space CHAPTER V. Area of a surface z=F(x,y) § 1. Preliminary remarks § 2. Area of a surface § 3. The Burkill integral § 4. Bounded variation and absolute continuity for functions of two variables § 5. The expressions of de Geöcze § 6. Integrals of the expressions of de Geöcze § 7. Radò's Theorem § 8. Tonelli's Theorem CHAPTER VI. Major and minor functions § 1. Introduction § 2. Derivation with respect to normal sequences of nets § 3. Major and minor functions § 4. Derivation with respect to binary sequences of nets § 5. Applications to functions of a complex variable § 6. The Perron integral § 7. Derivates of functions of a real variable § 8. The Perron-Stieltjes integral CHAPTER VII. Functions of generalized bounded variation § 1. Introduction § 2. A theorem of Lusin § 3. Approximate limits and derivatives § 4. Functions VB and VBG § 5. Functions AC and ACG § 6. Lusin's condition (N) § 7. Functions VB* and VBG* § 8. Functions AC* and ACG* § 9. Definitions of Denjoy-Lusin CHAPTER VIII. Denjoy integrals § 1. Descriptive definition of the Denjoy integrals § 2. Integration by parts § 3. Theorem of Hake-Alexandroff-Looman § 4. General notion of integral § 5. Constructive definition of the Denjoy integrals CHAPTER IX. Derivates of functions of one or two real variables § 1. Some elementary theorems § 2. Contingent of a set § 3. Fundamental theorems on the contingents of plane sets § 4. Denjoy's theorems § 5. Relative derivates § 6. The Banach conditions (T1) and (T2) § 7. Three theorems of Banach § 8. Superpositions of absolutely continuous functions § 9. The condition (D) § 10. A theorem of Denjoy-Khintchine on approximate derivates § 11. Approximate partial derivates of functions of two variables § 12. Total and approximate differentials § 13. Fundamental theorems on the contingent of a set in space § 14. Extreme differentials NOTE I by S. Banach. On Haar's measure NOTE II by S.Banach. The Lebesgue integral in abstract spaces BIBLIOGRAPHY GENERAL INDEX NOTATIONS
Zawartość
Pokaż wszystkie zasoby
Inne tytuły, wydawcy, streszczenia, słowa kluczowe
Słowa kluczowe
Tematy
Kolekcje, uwagi, identyfikatory
Twórcy
Warianty tytułu
Miejsce publikacji
Warszawa-Lwów
Języki publikacji
EN
Bibliografia
Opis fizyczny
Monografie Matematyczne, Tom 7
Liczba stron
Liczba rozdzia³ów
Daty
wydano
1937
Uwagi
Kolekcja
DML-PL
Copyright
Identyfikator YADDA
bwmeta1.element.dl-catalog-42a56b61-37f4-4c6b-a42b-ea95a98e407a
Identyfikatory
Zawartość książki

rozwiń roczniki

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.